









虽然物体识别已经被广泛研究了很多年,研究出大量的技术和算法,物体识别方法的健壮性、正确性、效率以及范围得到了很大的提升,但是现在依然存在一些困难以及识别障碍。这些困难主要有:
知识导引问题:
同样的图像在不同的知识导引下,会产生不同的识别结果,知识库的建立不仅要使用物体的自身知识,如颜色、纹理、形状等,物体识别桌设备,也需要物体间关系的知识,知识库的有效性与准备性直接影响了物体识别的准确性。
基于统计的方法与基于物体部件的方法:
根据识别方法是否对局部特征之间的关系建模,可以把识别方法分为基于统计的方法与基于物体部件的方法。
1、基于统计的物体分类方法(bow:bag of words)
bow模型严格上讲并不是一种物体识别方法,而是一种物体分类方法。这种模型的灵感来自于nlp中的bow模型。。一幅图像可以看作是一篇“文档”,而图像中提取出的特征认为是“词语”。
1)生成性方法的学习与识别
生成性的学习方法通过先验知识去拟合并解释图像中的信号。在中,有两种主要的生成性方法,一种是nb(朴素贝叶斯),另外一种是plsa(概率潜语义分析)与lda(线性判别分析)。
此时的主流方法是只从图像本身考虑,而不去管物体原来的三维形状。这类方法统一叫做appearance based techniques。所谓appearance, 从模式识别的角度去描述的话,物体识别桌,就是图像特征(feature),即对图像的一种抽象描述。有了图像特征,就可以在这个特征空间内做匹配,或者分类。然 而这个方法还是存在很多问题,物体识别桌系统,首先它需要我们对所有的图片进行对齐,像人脸图像,就要求每一幅图中五官基本在固定的位置。但是很多应用场景下,目标并不是 像人脸那么规整,物体识别桌厂家,很难去做统一对齐,而且这种基于全局特征和简单欧式距离的检索方法,对复杂背景,遮挡,和几何变化等并不适用。
物体识别桌-华奕科技-物体识别桌系统由北京华奕互动科技有限公司提供。北京华奕互动科技有限公司是北京 北京市 ,电子、电工产品制造设备的见证者,多年来,公司贯彻执行科学管理、---发展、诚实守信的方针,满足客户需求。在华奕科技---携全体员工热情欢迎---垂询洽谈,共创华奕科技美好的未来。
联系我们时请一定说明是在100招商网上看到的此信息,谢谢!
本文链接:https://tztz335699a2.zhaoshang100.com/zhaoshang/281998979.html
关键词: